Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Two-dimensional (2D) metal oxide semiconductors offer a superlative combination of high electron mobility and visible-range transparency uniquely suitable for flexible transparent electronics. Synthesis of these ultrathin (<3 nm) semiconductors by Cabrera-Mott oxidation of liquid metals could enable emerging device applications but requires the precise design of their electrostatics at the nanoscale. This study demonstrates sub-nanometer-level control over the thickness of semiconducting 2D antimony-doped indium oxide (AIO) by manipulating the kinetics of Cabrera-Mott oxidation through variable-speed liquid metal printing at plastic-compatible temperatures (175°C). By modulating both the growth kinetics and doping, we engineer the conductivity and crystallinity of AIO for integration in ultrathin channel transistors exhibiting exceptional steep turn-on, on-off ratios > 106 and an outstanding average mobility of 34.7 ± 12.9 cm2/Vs. This result shows the potential for kinetically controlling 2D oxide synthesis for various high-performance optoelectronic device applications.more » « lessFree, publicly-accessible full text available April 1, 2026
-
2D native surface oxides formed on low melting temperature metals such as indium and gallium offer unique opportunities for fabricating high-performance flexible electronics and optoelectronics based on a new class of liquid metal printing (LMP). An inherent property of these Cabrera-Mott 2D oxides is their suboxide nature (e.g., In2O3−x), which leads high mobility LMP semiconductors to exhibit high electron concentrations (ne > 1019 cm−3) limiting electrostatic control. Binary alloying of the molten precursor can produce doped, ternary metal oxides such as In-X-O with enhanced electronic performance and greater bias-stress stability, though this approach demands a deeper understanding of the native oxides of alloys. This work presents an approach for hypoeutectic rapid LMP of crystalline InGaOx (IGO) at ultralow process temperatures (180 °C) beyond the state of the art to fabricate transistors with 10X steeper subthreshold slope and high mobility (≈18 cm2 Vs−1). Detailed characterization of IGO crystallinity, composition, and morphology, as well as measurements of its electronic density of states (DOS), show the impact of Ga-doping and reveal the limits of doping induced amorphization from hypoeutectic precursors. The ultralow process temperatures and compatibility with high-k Al2O3 dielectrics shown here indicate potential for 2D IGO to drive low-power flexible transparent electronics.more » « less
-
We present a rapid liquid metal printing process (CLMP) enabling fabrication of high-mobility metal oxide semiconducting channels in less than 3 seconds. We use this process to engineer heterostructure TFTs with channels consisting of 3 nm layers of In2O3 and Ga2O3 with improved subthreshold slope and enhanced on-state performance (uave∼14cm2/Vs) . We report the influence of deposition temperature and speed, investigating crystallinity and grain morphology of this class of 2D oxide semiconductors.more » « less
An official website of the United States government

Full Text Available